Gender and Educational Differences of Active Life Expectancy for the Elderly in Taiwan, 1989-1999

Mandy, Meng-Fan Li
Shih Chien University, Taipei, Taiwan

Yasuhiko Saito
Nihon University Center for Information Networking, Tokyo, Japan

Paper prepared for the Second Aging and Health in Asia Project Meeting (AHA),
May 27-28, 2004, Singapore
Background Information

In the past 50 years, Taiwan has experienced the following demographic changes:

- **Fertility and Mortality: High → Low**
 - Fertility: 46.6 (1952) → 11.02 (2003) /per thousand (-76.4%)
 - Mortality: 9.9 (1952) → 5.7 (2003) /per thousand (-42.4%)

- **Aging Population**
 - Age 65: 2.5% (1951) → 9.3% (2002) (+272%)

- **Life Expectancy**
 - Females: 57 (1950) → 78.94 (2002) (+21.94 years)
 - Males: 53 (1950) → 73.22 (2002) (+20.22 years)
Objectives of the Study

To address whether prolonging life will also extend longer years of active life expectancy for the elderly in Taiwan

- To estimate the probabilities of health transitions (PHT) from one to another states for the age 60 and over in Taiwan during 1989 -99
- To estimate life expectancy (LE) and active life expectancy (ALE) for the age 60 and over between 1989 to 1999 in Taiwan
- To examine whether there are differences of LE and ALE among gender and educational sub-groups of the elderly population
Previous Research in PHT and ALE by Gender

- Older females
 - Higher PHT in deteriorating to an unhealthy state and remaining in an unhealthy state
 - Lower PHT in mortality
 (Crimmins & Hayward 1997; Rogers, Rogers, et al. 1992)
 - More years of LE and ALE, but lower percentages of ALE
 (Robine, Mathers, et al., 1996; Crimmins & Hayward, 1997)

PHT: Probabilities of Health Transitions
Previous Research in PHT & ALE by Education

- Studies show large inequities by educational status in active life expectancy (ALE)
 (Crimmins & Saito, 2001; van den Bos & van der Maas, 1993)
- Lower level of education
 - Higher mortality rates and prevalence of disability
 (Crimmins & Saito, 2001; van den Bos & van der Maas, 1993)
 - Social class gradient is smaller for females than males in years of LE and ALE
 - Older females with lower level of education have twice mortality ratio compared to the higher level one, which results in a difference in 4-5 years of LE
 (van den Bos & van der Maas, 1993, Amsterdam study)
- Higher levels of education results in a decreased incidence of functional limitation only for those originating in an active state, but not for those who originating in an inactive state
Methods - Source of Data & Survey Design

● **Source of data**
 - Surveys of Health and Living Status of the Middle Aged and Elderly in Taiwan (SHLSE)

● **Survey design**
 - Multi-stage national probability sampling method
 - Population: Age 60 and over in 1989 in Taiwan
 - Longitudinal national surveys – a panel study
Sampling and Response Rates

<table>
<thead>
<tr>
<th>Content</th>
<th>1<sup>st</sup> wave</th>
<th>2<sup>nd</sup> wave</th>
<th>3<sup>rd</sup> wave</th>
<th>4<sup>th</sup> wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interview months</td>
<td>4-11</td>
<td>4-12</td>
<td>4-12</td>
<td>4-12</td>
</tr>
<tr>
<td>No. or respondents (Age of respondents)</td>
<td>4049 (60+)</td>
<td>3154 (64+)</td>
<td>2669 (67+)</td>
<td>2310 (70+)</td>
</tr>
<tr>
<td>Deceased cases (Cumulate N.)</td>
<td>-</td>
<td>590</td>
<td>470 (1069)</td>
<td>426 (1488)</td>
</tr>
<tr>
<td>Response rates (%)</td>
<td>91.8%</td>
<td>91.2%</td>
<td>89.3%</td>
<td>90.8%</td>
</tr>
</tbody>
</table>
Conceptual Framework

Health Transitions: Multi-state life table method

Health transition stages:

- **Active (Healthy)**
- **Inactive (Unhealthy)**
- **Death**

- Retained health status
- Deteriorating health status
- Improving health status
Operational Definition

● Health index
 ● Activity of daily living (Bathing)+Instrumental of daily living (5 IADLs items)
 ● reasons for using this new composite health index
 • Limitation of the survey: Lake of completed ADL items in the first wave survey
 • Comparing to other health indices

● Active life expectancy (ALE) v.s. Inactive LE (IALE)
 ● ALE means years of life that one is able to perform any of the activity in health index
 ● IALE means years of life that one is unable to perform at least one activity in each health index
Comparisons with other health indices

<table>
<thead>
<tr>
<th>Health Indices</th>
<th>Year of survey</th>
<th>BATHING+5IADLs</th>
<th>1993</th>
<th>1996</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health indices</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total (N)</td>
<td></td>
<td></td>
<td>2040</td>
<td>1104</td>
<td>1824</td>
</tr>
<tr>
<td>6ADLs+5IADLs</td>
<td>0</td>
<td>2040</td>
<td>0</td>
<td>1824</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1104</td>
<td>0</td>
<td>838</td>
</tr>
<tr>
<td>Bathing</td>
<td>0</td>
<td>2040</td>
<td>958</td>
<td>1824</td>
<td>688</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>142</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Missing</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5IADLs</td>
<td>0</td>
<td>2039</td>
<td>1</td>
<td>1824</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1103</td>
<td>0</td>
<td>837</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (Bathing+5IADLs) and other health index (6ALDs+5IADLs) in three wave surveys (1993, 1996, 1999) are identical.

- 5IADLs include shopping, managing money, making the phone call, taking the bus/train, and doing heavy house work
Method of Analysis

- The Interpolation Markov Chain (IMaCh) developed by Brouard & Lièvre based on multinomial logistic regression
- Advantages of IMaCh
 - Deal with many waves of data at once and different lengths of intervals between surveys
 - Calculate probability of Health transitions (PHT) for a single year of age by gender and other covariates (education)
 - Calculate active life expectancy (ALE) / Inactive ALE (IALE) for a single year age by gender
 - Manage LE/ALE/IALE by two covariates at the same time and consider interaction effects
 - Calculate ALE and provide us standard error
Results - Characteristics of the study

<table>
<thead>
<tr>
<th>Years of education</th>
<th>Total</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2025</td>
<td>32.5%</td>
<td>73.8%</td>
</tr>
<tr>
<td>1-6</td>
<td>1236</td>
<td>39.0%</td>
<td>19.6%</td>
</tr>
<tr>
<td>7+</td>
<td>768</td>
<td>28.5%</td>
<td>6.5%</td>
</tr>
<tr>
<td>Missing</td>
<td>9</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Total</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (N)</td>
<td>4038</td>
<td>2302</td>
<td>1736</td>
</tr>
<tr>
<td>(%)</td>
<td>100%</td>
<td>57.0%</td>
<td>43.0%</td>
</tr>
<tr>
<td>Age 60-63</td>
<td>1204</td>
<td>32.4%</td>
<td>26.4%</td>
</tr>
<tr>
<td>64-66</td>
<td>783</td>
<td>20.7%</td>
<td>17.6%</td>
</tr>
<tr>
<td>67-69</td>
<td>639</td>
<td>15.7%</td>
<td>16.0%</td>
</tr>
<tr>
<td>70-74</td>
<td>1162</td>
<td>16.6%</td>
<td>19.8%</td>
</tr>
<tr>
<td>75-79</td>
<td>250</td>
<td>9.4%</td>
<td>12.7%</td>
</tr>
<tr>
<td>80+</td>
<td>79</td>
<td>5.3%</td>
<td>7.4%</td>
</tr>
</tbody>
</table>
PHTs for retaining in the same health state

Older Males

Older Females

Retain in an active state

Retain in an Inactive state

2005/3/14
PHTs for improving to an active state

Older Males

Older Females
Probabilities of Mortality

Older Males

Older Females

From an Inactive state

From an active state
PHTs for decreasing to an inactive state

Older Males

Older Females

2005/3/14
Discussions in PHTs

- Genders have different patterns of PHT
 - Males at age 60 and over
 - Higher Mortality, especially from inactive state
 - Higher PHT for decreasing to an inactive state
 - Lower PHT for improving to an active state

- Levels of education
 - Higher levels of education have consistently and positive impact on the PHTs for both genders cross ages
 - Higher level of education
 - Higher PHT for remaining in an active state & for improving to an active state (only for females)
 - Lower PHT for decreasing to an inactive state and mortality

- Exceptions for the older males who started with an inactive state
ALE at age 65 by gender and levels of education

Males age 65

Females at age 65

66% of ALE

67%

72%

77%
Differences of ALE and IALE among levels of education

Males at age 65

Females at age 65

<table>
<thead>
<tr>
<th>Years</th>
<th>ALE</th>
<th>IALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-6)-0</td>
<td>1.43</td>
<td>-0.55</td>
</tr>
<tr>
<td>(7+)-0</td>
<td>2.89</td>
<td>-1.06</td>
</tr>
<tr>
<td>(1-6)-0</td>
<td>3.61</td>
<td>-0.23</td>
</tr>
<tr>
<td>(7+)-0</td>
<td>7.10</td>
<td>-1.45</td>
</tr>
</tbody>
</table>
Conclusion – Significance of the Study

- This is the first study based on the panel survey data to estimate years of ALE for the elderly in Taiwan by using IMaCh program.
- Gradient of inequities by educational status in ALE existed cross gender and age groups for the elderly in Taiwan.
- Being females and with higher level of education have positive effects on the PHTs and ALE.
- Years of differences in ALE among educational groups are greater for females (3.6-7 years) than for males (1.4-3 years) at age 65.
- Future research:
 - Cohort effects on the ALE by gender and social economic status (SES).
 - How Risk factor of healthy life style, i.e. Obesity and exercise, related to ALE by gender and SES.
Acknowledgements

- Bureau of Health Promotion, DOH, Taiwan, R.O.C.
- AHA project
- Population Council, New York

Thank You

Welcome to contact with me
Mandyli@mail.usc.eud.tw